232 research outputs found

    No effect of arm exercise on diaphragmatic fatigue or ventilatory constraint in Paralympic athletes with cervical spinal cord injury

    Get PDF
    Cervical spinal cord injury (CSCI) results in a decrease in the capacity of the lungs and chest wall for pressure, volume, and airflow generation. We asked whether such impairments might increase the potential for exercise-induced diaphragmatic fatigue and mechanical ventilatory constraint in this population. Seven Paralympic wheelchair rugby players (mean ± SD peak oxygen uptake = 16.9 ± 4.9 ml·kg–1·min–1) with traumatic CSCI (C5–C7) performed arm-crank exercise to the limit of tolerance at 90% of their predetermined peak work rate. Diaphragm function was assessed before and 15 and 30 min after exercise by measuring the twitch transdiaphragmatic pressure (Pdi,tw) response to bilateral anterolateral magnetic stimulation of the phrenic nerves. Ventilatory constraint was assessed by measuring the tidal flow volume responses to exercise in relation to the maximal flow volume envelope. Pdi,tw was not different from baseline at any time after exercise (unpotentiated Pdi,tw = 19.3 ± 5.6 cmH2O at baseline, 19.8 ± 5.0 cmH2O at 15 min after exercise, and 19.4 ± 5.7 cmH2O at 30 min after exercise; P = 0.16). During exercise, there was a sudden, sustained rise in operating lung volumes and an eightfold increase in the work of breathing. However, only two subjects showed expiratory flow limitation, and there was substantial capacity to increase both flow and volume (<50% of maximal breathing reserve). In conclusion, highly trained athletes with CSCI do not develop exercise-induced diaphragmatic fatigue and rarely reach mechanical ventilatory constraint

    Prefrontal cortex output circuits guide reward seeking through divergent cue encoding

    Get PDF
    The prefrontal cortex is a critical neuroanatomical hub for controlling motivated behaviours across mammalian species. In addition to intra-cortical connectivity, prefrontal projection neurons innervate subcortical structures that contribute to reward-seeking behaviours, such as the ventral striatum and midline thalamus. While connectivity among these structures contributes to appetitive behaviours, how projection-specific prefrontal neurons encode reward-relevant information to guide reward seeking is unknown. Here we use in vivo two-photon calcium imaging to monitor the activity of dorsomedial prefrontal neurons in mice during an appetitive Pavlovian conditioning task. At the population level, these neurons display diverse activity patterns during the presentation of reward-predictive cues. However, recordings from prefrontal neurons with resolved projection targets reveal that individual corticostriatal neurons show response tuning to reward-predictive cues, such that excitatory cue responses are amplified across learning. By contrast, corticothalamic neurons gradually develop new, primarily inhibitory responses to reward-predictive cues across learning. Furthermore, bidirectional optogenetic manipulation of these neurons reveals that stimulation of corticostriatal neurons promotes conditioned reward-seeking behaviour after learning, while activity in corticothalamic neurons suppresses both the acquisition and expression of conditioned reward seeking. These data show how prefrontal circuitry can dynamically control reward-seeking behaviour through the opposing activities of projection-specific cell populations

    Cholesterol and Lipoprotein Dynamics in a Hibernating Mammal

    Get PDF
    Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival

    Genetic variability in five populations of Partamona helleri (Hymenoptera, Apidae) from Minas Gerais State, Brazil

    Get PDF
    Partamona is a Neotropical genus of stingless bees that comprises 33 species distributed from Mexico to southern Brazil. These bees are well-adapted to anthropic environments and build their nests in several substrates. In this study, 66 colonies of Partamona helleri from five localities in the Brazilian state of Minas Gerais (São Miguel do Anta, Teixeiras, Porto Firme, Viçosa and Rio Vermelho) were analyzed using nine microsatellite loci in order to assess their genetic variability. Low levels of observed (Ho = 0.099-0.137) and expected (H e = 0.128-0.145) heterozygosity were encountered and revealed discrete genetic differentiation among the populations (F ST = 0.025). AMOVA further showed that most of the total genetic variation (94.24%) in P. helleri was explained by the variability within local populations

    PLD1 is overexpressed in an ER-negative MCF-7 cell line variant and a subset of phospho-Akt-negative breast carcinomas

    Get PDF
    We have used a novel variant of the human oestrogen receptor (ER)-positive MCF-7 cell line, TMX2-28, as a model to study breast cancer. TMX2-28 cells show no detectable levels of mRNA or protein expression for the ER and express basal cytokeratins (CKs) 5, 14, and 17. cDNA microarray comparison between TMX2-28 and its parent cell line, MCF-7, identified 1402 differentially expressed transcripts, one of which was, phospholipase D1 (PLD1). Using real-time RT–PCR, we confirmed that PLD1 mRNA levels are 10-fold higher in TMX2-28 cells than in MCF-7 cells. We next examined PLD1 expression in human breast carcinomas. Phospholipase D1 mRNA levels were higher in breast tumours that expressed high-mRNA levels of basal CKs 5 and/or 17, but PLD1 mRNA levels were not significantly higher in ER-negative tumours. Phospholipase D1 protein was overexpressed in 10 of 42 (24%) breast tumours examined by IHC. Phospholipase D1 was overexpressed in 6 of 31 ER-positive tumours and 4 of 11 ER-negative tumours. Phospholipase D1 was overexpressed in three of the four tumours that showed high CK5/17 expression. Five PLD1-positive tumours were negative for phospho-Akt expression, but positive for phospho-mammalian target of rapamycin (mTOR) expression. The other five PLD1-positive breast tumours showed positive expression for phospho-Akt; however, only two of these cases were positive for phospho-mTOR. In this study, we report that PLD1 and phospho-mTOR are coexpressed in a subset of phospho-Akt-negative breast carcinomas

    Genome Evolution of a Tertiary Dinoflagellate Plastid

    Get PDF
    The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata

    Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans

    Get PDF
    Substantial evidence implicates the nucleus accumbens in motivated performance, but very little is known about the neurochemical underpinnings of individual differences in motivation. Here, we applied 1H magnetic resonance spectroscopy (1H-MRS) at ultra-high-field in the nucleus accumbens and inquired whether levels of glutamate (Glu), glutamine (Gln), GABA or their ratios predict interindividual differences in effort-based motivated task performance. Given the incentive value of social competition, we also examined differences in performance under self-motivated or competition settings. Our results indicate that higher accumbal Gln-to-Glu ratio predicts better overall performance and reduced effort perception. As performance is the outcome of multiple cognitive, motor and physiological processes, we applied computational modeling to estimate best-fitting individual parameters related to specific processes modeled with utility, effort and performance functions. This model-based analysis revealed that accumbal Gln-to-Glu ratio specifically relates to stamina; i.e., the capacity to maintain performance over long periods. It also indicated that competition boosts performance from task onset, particularly for low Gln-to-Glu individuals. In conclusion, our findings provide novel insights implicating accumbal Gln and Glu balance on the prediction of specific computational components of motivated performance. This approach and findings can help developing therapeutic strategies based on targeting metabolism to ameliorate deficits in effort engagement

    Changes in Whole Blood Gene Expression in Obese Subjects with Type 2 Diabetes Following Bariatric Surgery: a Pilot Study

    Get PDF
    A pilot study was performed in order to investigate the effects of bariatric surgery on whole blood gene expression profiles in obese subjects with type 2 diabetes.Whole blood from eleven obese subjects with type 2 diabetes was collected in PAXgene tubes prior to and 6-12 months after bariatric surgery. Total RNA was isolated, amplified, labeled and hybridized to Illumina gene expression microarrays. Clinical and expression data were analyzed using a paired t-test, and correlations between changes in clinical trait and transcript levels were calculated. Pathways were identified using Ingenuity Pathway Analysis and DAVID gene ontology software. Overall, bariatric surgery resulted in significant reduction of body mass index, fasting plasma glucose, fasting plasma insulin, and normalization of glycosylated hemoglobin levels. The expression levels of 204 transcripts, representing 200 unique genes, were significantly altered after bariatric surgery. Among the significantly regulated genes were GGT1, CAMP, DEFA1, LCN2, TP53, PDSS1, OLR1, CNTNAP5, DHCR24, HHAT and SARDH, which have been previously implicated in lipid metabolism, obesity and/or type 2 diabetes. Selected findings were replicated by quantitative real-time-PCR. The changes in expression of seven transcripts, WDR35, FLF45244, DHCR24, TIGD7, TOPBP1, TSHZ1, and FAM8A1 were strongly correlated with the changes in body weight, fasting plasma glucose and glycosylated hemoglobin content. The top pathways associated with gene expression changes after bariatric surgery was lipid metabolism, small molecule biochemistry and gene expression. Two antimicrobial peptides were among the transcripts with the largest changes in gene expression after bariatric surgery.Data from this pilot study suggest that whole blood expression levels of specific transcripts may be useful as biomarkers associated with susceptibility for type 2 diabetes and/or therapeutic response

    Involvement of Noradrenergic Transmission in the PVN on CREB Activation, TORC1 Levels, and Pituitary-Adrenal Axis Activity during Morphine Withdrawal

    Get PDF
    Experimental and clinical findings have shown that administration of adrenoceptor antagonists alleviated different aspects of drug withdrawal and dependence. The present study tested the hypothesis that changes in CREB activation and phosphorylated TORC1 levels in the hypothalamic paraventricular nucleus (PVN) after naloxone-precipitated morphine withdrawal as well as the HPA axis activity arises from α1- and/or β-adrenoceptor activation. The effects of morphine dependence and withdrawal on CREB phosphorylation (pCREB), phosphorylated TORC1 (pTORC1), and HPA axis response were measured by Western-blot, immunohistochemistry and radioimmunoassay in rats pretreated with prazosin (α1-adrenoceptor antagonist) or propranolol (β-adrenoceptor antagonist). In addition, the effects of morphine withdrawal on MHPG (the main NA metabolite at the central nervous system) and NA content and turnover were evaluated by HPLC. We found an increase in MHPG and NA turnover in morphine-withdrawn rats, which were accompanied by increased pCREB immunoreactivity and plasma corticosterone concentrations. Levels of the inactive form of TORC1 (pTORC1) were decreased during withdrawal. Prazosin but not propranolol blocked the rise in pCREB level and the decrease in pTORC1 immunoreactivity. In addition, the HPA axis response to morphine withdrawal was attenuated in prazosin-pretreated rats. Present results suggest that, during acute morphine withdrawal, NA may control the HPA axis activity through CREB activation at the PVN level. We concluded that the combined increase in CREB phosphorylation and decrease in pTORC1 levels might represent, in part, two of the mechanisms of CREB activation at the PVN during morphine withdrawal
    corecore